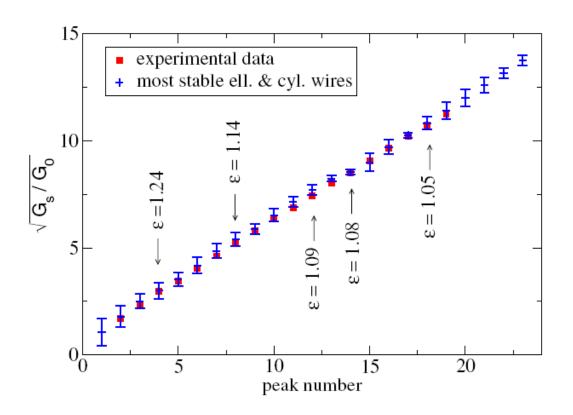

Stability analysis of cylindrical and elliptical metal nanowires

Charles A. Stafford, University of Arizona, DMR0312028


Linear stability analysis for monovalent metals using nanoscale free-electron model. Magic cylinders with $G/G_0 = 1, 3, 6, 12, 17, 23, \dots$ predicted to be extremely stable, where $G_0 = 2e^2/h$ is the conductance quantum.

Stable wires with $G/G_0 = 2, 5, 9, 29, \dots$ predicted to have elliptic cross sections.

D. F. Urban, J. Bürki, C.-H. Zhang, CAS & H. Grabert, Phys. Rev. Lett. 93, 186403 (2004)

Comparison of experimental data for sodium with predicted most stable sodium nanowires

Exp: A. I. Yanson, I. K. Yanson & J. M. van Ruitenbeek, Nature **400**, 144 (1999) Theory: D. F. Urban, J. Bürki, C.-H. Zhang, CAS & H. Grabert, Phys. Rev. Lett. **93**, 186403 (2004)

Stability of metal nanowires

Charles A. Stafford, University of Arizona, DMR0312028

Broader impact

Metal interconnects predicted to be stable all the way down to atomic scale!

Education

Two graduate students (Chang-hua Zhang and Daniel Urban) and one postdoc (Jérôme Bürki) contributed to this work. Zhang received his Ph.D. in 2004, and is currently a postdoc at Indiana University.

Outreach

Organized Public Lecture Series on Nanoscience and Nanotechnology at the University of Arizona (2001-2004)

International collaboration

This work was carried out in collaboration with Hermann Grabert and D. Urban of Albert-Ludwigs-Universität, Freiburg, Germany.